Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 329
Filtrar
3.
J Clin Epidemiol ; : 111364, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38631529

RESUMO

OBJECTIVES: To develop a framework to identify and evaluate spin practices and its facilitators in studies on clinical prediction model, regardless of the modelling technique. STUDY DESIGN: We followed a three-phase consensus process: (1) pre-meeting literature review to generate items to be included; (2) a series of structured meetings to provide comments, discussed and exchanged viewpoints on items to be included with a panel of experienced researchers; and (3) post-meeting review on final list of items and examples to be included. Through this iterative consensus process, a framework was derived after all panel's researchers agreed. RESULTS: This consensus process involved a panel of eight researchers and resulted in SPIN-PM which consists of two categories of spin (misleading interpretation and misleading transportability), and within these categories, two forms of spin (spin practices and facilitators of spin). We provide criteria and examples. CONCLUSION: We proposed this guidance aiming to facilitate not only the accurate reporting but also an accurate interpretation and extrapolation of clinical prediction models which will likely improve the reporting quality of subsequent research, as well as reduce research waste.

4.
EClinicalMedicine ; 71: 102555, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38549586

RESUMO

Background: Diagnosis is a cornerstone of medical practice. Worldwide, there is increased demand for diagnostic services, exacerbating workforce shortages. Artificial intelligence (AI) technologies may improve diagnostic efficiency, accuracy, and access. Understanding stakeholder perspectives is key to informing implementation of complex interventions. We systematically reviewed the literature on stakeholder perspectives on diagnostic AI, including all English-language peer-reviewed primary qualitative or mixed-methods research. Methods: We searched PubMed, Ovid MEDLINE/Embase, Scopus, CINAHL and Web of Science (22/2/2023 and updated 8/2/2024). The Critical Appraisal Skills Programme Checklist informed critical appraisal. We used a 'best-fit' framework approach for analysis, using the Non-adoption, Abandonment, Scale-up, Spread, Sustainability (NASSS) framework. This study was pre-registered (PROSPERO CRD42022313782). Findings: We screened 16,577 articles and included 44. 689 participants were interviewed, and 402 participated in focus groups. Four stakeholder groups were described: patients, clinicians, researchers and healthcare leaders. We found an under-representation of patients, researchers and leaders across articles. We summarise the differences and relationships between each group in a conceptual model, hinging on the establishment of trust, engagement and collaboration. We present a modification of the NASSS framework, tailored to diagnostic AI. Interpretation: We provide guidance for future research and implementation of diagnostic AI, highlighting the importance of representing all stakeholder groups. We suggest that implementation strategies consider how any proposed software fits within the extended NASSS-AI framework, and how stakeholder priorities and concerns have been addressed. Funding: RK is supported by an NIHR Doctoral Research Fellowship grant (NIHR302562), which funded patient and public involvement activities, and access to Covidence.

5.
J Clin Epidemiol ; 169: 111309, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38428538

RESUMO

OBJECTIVES: To describe, and explain the rationale for, the methods used and decisions made during development of the updated SPIRIT 2024 and CONSORT 2024 reporting guidelines. METHODS: We developed SPIRIT 2024 and CONSORT 2024 together to facilitate harmonization of the two guidelines, and incorporated content from key extensions. We conducted a scoping review of comments suggesting changes to SPIRIT 2013 and CONSORT 2010, and compiled a list of other possible revisions based on existing SPIRIT and CONSORT extensions, other reporting guidelines, and personal communications. From this, we generated a list of potential modifications or additions to SPIRIT and CONSORT, which we presented to stakeholders for feedback in an international online Delphi survey. The Delphi survey results were discussed at an online expert consensus meeting attended by 30 invited international participants. We then drafted the updated SPIRIT and CONSORT checklists and revised them based on further feedback from meeting attendees. RESULTS: We compiled 83 suggestions for revisions or additions to SPIRIT and/or CONSORT from the scoping review and 85 from other sources, from which we generated 33 potential changes to SPIRIT (n = 5) or CONSORT (n = 28). Of 463 participants invited to take part in the Delphi survey, 317 (68%) responded to Round 1, 303 (65%) to Round 2 and 290 (63%) to Round 3. Two additional potential checklist changes were added to the Delphi survey based on Round 1 comments. Overall, 14/35 (SPIRIT n = 0; CONSORT n = 14) proposed changes reached the predefined consensus threshold (≥80% agreement), and participants provided 3580 free-text comments. The consensus meeting participants agreed with implementing 11/14 of the proposed changes that reached consensus in the Delphi and supported implementing a further 4/21 changes (SPIRIT n = 2; CONSORT n = 2) that had not reached the Delphi threshold. They also recommended further changes to refine key concepts and for clarity. CONCLUSION: The forthcoming SPIRIT 2024 and CONSORT 2024 Statements will provide updated, harmonized guidance for reporting randomized controlled trial protocols and results, respectively. The simultaneous development of the SPIRIT and CONSORT checklists has been informed by current empirical evidence and extensive input from stakeholders. We hope that this report of the methods used will be helpful for developers of future reporting guidelines.

6.
J Clin Epidemiol ; 169: 111287, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38387617

RESUMO

BACKGROUND AND OBJECTIVE: Protocols are invaluable documents for any research study, especially for prediction model studies. However, the mere existence of a protocol is insufficient if key details are omitted. We reviewed the reporting content and details of the proposed design and methods reported in published protocols for prediction model research. METHODS: We searched MEDLINE, Embase, and the Web of Science Core Collection for protocols for studies developing or validating a diagnostic or prognostic model using any modeling approach in any clinical area. We screened protocols published between Jan 1, 2022 and June 30, 2022. We used the abstract, introduction, methods, and discussion sections of The Transparent Reporting of a multivariable prediction model of Individual Prognosis Or Diagnosis (TRIPOD) statement to inform data extraction. RESULTS: We identified 30 protocols, of which 28 were describing plans for model development and six for model validation. All protocols were open access, including a preprint. 15 protocols reported prospectively collecting data. 21 protocols planned to use clustered data, of which one-third planned methods to account for it. A planned sample size was reported for 93% development and 67% validation analyses. 16 protocols reported details of study registration, but all protocols reported a statement on ethics approval. Plans for data sharing were reported in 13 protocols. CONCLUSION: Protocols for prediction model studies are uncommon, and few are made publicly available. Those that are available were reasonably well-reported and often described their methods following current prediction model research recommendations, likely leading to better reporting and methods in the actual study.

7.
Nat Commun ; 15(1): 1619, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388497

RESUMO

The Consolidated Standards of Reporting Trials extension for Artificial Intelligence interventions (CONSORT-AI) was published in September 2020. Since its publication, several randomised controlled trials (RCTs) of AI interventions have been published but their completeness and transparency of reporting is unknown. This systematic review assesses the completeness of reporting of AI RCTs following publication of CONSORT-AI and provides a comprehensive summary of RCTs published in recent years. 65 RCTs were identified, mostly conducted in China (37%) and USA (18%). Median concordance with CONSORT-AI reporting was 90% (IQR 77-94%), although only 10 RCTs explicitly reported its use. Several items were consistently under-reported, including algorithm version, accessibility of the AI intervention or code, and references to a study protocol. Only 3 of 52 included journals explicitly endorsed or mandated CONSORT-AI. Despite a generally high concordance amongst recent AI RCTs, some AI-specific considerations remain systematically poorly reported. Further encouragement of CONSORT-AI adoption by journals and funders may enable more complete adoption of the full CONSORT-AI guidelines.


Assuntos
Inteligência Artificial , Padrões de Referência , China , Ensaios Clínicos Controlados Aleatórios como Assunto
8.
Sci Data ; 11(1): 221, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388690

RESUMO

Intersectional social determinants including ethnicity are vital in health research. We curated a population-wide data resource of self-identified ethnicity data from over 60 million individuals in England primary care, linking it to hospital records. We assessed ethnicity data in terms of completeness, consistency, and granularity and found one in ten individuals do not have ethnicity information recorded in primary care. By linking to hospital records, ethnicity data were completed for 94% of individuals. By reconciling SNOMED-CT concepts and census-level categories into a consistent hierarchy, we organised more than 250 ethnicity sub-groups including and beyond "White", "Black", "Asian", "Mixed" and "Other, and found them to be distributed in proportions similar to the general population. This large observational dataset presents an algorithmic hierarchy to represent self-identified ethnicity data collected across heterogeneous healthcare settings. Accurate and easily accessible ethnicity data can lead to a better understanding of population diversity, which is important to address disparities and influence policy recommendations that can translate into better, fairer health for all.


Assuntos
Etnicidade , Saúde da População , Humanos , Inglaterra
9.
Nat Methods ; 21(2): 195-212, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38347141

RESUMO

Increasing evidence shows that flaws in machine learning (ML) algorithm validation are an underestimated global problem. In biomedical image analysis, chosen performance metrics often do not reflect the domain interest, and thus fail to adequately measure scientific progress and hinder translation of ML techniques into practice. To overcome this, we created Metrics Reloaded, a comprehensive framework guiding researchers in the problem-aware selection of metrics. Developed by a large international consortium in a multistage Delphi process, it is based on the novel concept of a problem fingerprint-a structured representation of the given problem that captures all aspects that are relevant for metric selection, from the domain interest to the properties of the target structure(s), dataset and algorithm output. On the basis of the problem fingerprint, users are guided through the process of choosing and applying appropriate validation metrics while being made aware of potential pitfalls. Metrics Reloaded targets image analysis problems that can be interpreted as classification tasks at image, object or pixel level, namely image-level classification, object detection, semantic segmentation and instance segmentation tasks. To improve the user experience, we implemented the framework in the Metrics Reloaded online tool. Following the convergence of ML methodology across application domains, Metrics Reloaded fosters the convergence of validation methodology. Its applicability is demonstrated for various biomedical use cases.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Aprendizado de Máquina , Semântica
13.
BMJ ; 384: e077192, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38296328

RESUMO

OBJECTIVES: To determine the extent and content of academic publishers' and scientific journals' guidance for authors on the use of generative artificial intelligence (GAI). DESIGN: Cross sectional, bibliometric study. SETTING: Websites of academic publishers and scientific journals, screened on 19-20 May 2023, with the search updated on 8-9 October 2023. PARTICIPANTS: Top 100 largest academic publishers and top 100 highly ranked scientific journals, regardless of subject, language, or country of origin. Publishers were identified by the total number of journals in their portfolio, and journals were identified through the Scimago journal rank using the Hirsch index (H index) as an indicator of journal productivity and impact. MAIN OUTCOME MEASURES: The primary outcomes were the content of GAI guidelines listed on the websites of the top 100 academic publishers and scientific journals, and the consistency of guidance between the publishers and their affiliated journals. RESULTS: Among the top 100 largest publishers, 24% provided guidance on the use of GAI, of which 15 (63%) were among the top 25 publishers. Among the top 100 highly ranked journals, 87% provided guidance on GAI. Of the publishers and journals with guidelines, the inclusion of GAI as an author was prohibited in 96% and 98%, respectively. Only one journal (1%) explicitly prohibited the use of GAI in the generation of a manuscript, and two (8%) publishers and 19 (22%) journals indicated that their guidelines exclusively applied to the writing process. When disclosing the use of GAI, 75% of publishers and 43% of journals included specific disclosure criteria. Where to disclose the use of GAI varied, including in the methods or acknowledgments, in the cover letter, or in a new section. Variability was also found in how to access GAI guidelines shared between journals and publishers. GAI guidelines in 12 journals directly conflicted with those developed by the publishers. The guidelines developed by top medical journals were broadly similar to those of academic journals. CONCLUSIONS: Guidelines by some top publishers and journals on the use of GAI by authors are lacking. Among those that provided guidelines, the allowable uses of GAI and how it should be disclosed varied substantially, with this heterogeneity persisting in some instances among affiliated publishers and journals. Lack of standardization places a burden on authors and could limit the effectiveness of the regulations. As GAI continues to grow in popularity, standardized guidelines to protect the integrity of scientific output are needed.


Assuntos
Inteligência Artificial , Publicações Periódicas como Assunto , Humanos , Estudos Transversais , Editoração , Bibliometria
14.
ArXiv ; 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36945687

RESUMO

Validation metrics are key for the reliable tracking of scientific progress and for bridging the current chasm between artificial intelligence (AI) research and its translation into practice. However, increasing evidence shows that particularly in image analysis, metrics are often chosen inadequately in relation to the underlying research problem. This could be attributed to a lack of accessibility of metric-related knowledge: While taking into account the individual strengths, weaknesses, and limitations of validation metrics is a critical prerequisite to making educated choices, the relevant knowledge is currently scattered and poorly accessible to individual researchers. Based on a multi-stage Delphi process conducted by a multidisciplinary expert consortium as well as extensive community feedback, the present work provides the first reliable and comprehensive common point of access to information on pitfalls related to validation metrics in image analysis. Focusing on biomedical image analysis but with the potential of transfer to other fields, the addressed pitfalls generalize across application domains and are categorized according to a newly created, domain-agnostic taxonomy. To facilitate comprehension, illustrations and specific examples accompany each pitfall. As a structured body of information accessible to researchers of all levels of expertise, this work enhances global comprehension of a key topic in image analysis validation.

15.
J Clin Epidemiol ; 165: 111206, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37925059

RESUMO

OBJECTIVES: Risk of bias assessments are important in meta-analyses of both aggregate and individual participant data (IPD). There is limited evidence on whether and how risk of bias of included studies or datasets in IPD meta-analyses (IPDMAs) is assessed. We review how risk of bias is currently assessed, reported, and incorporated in IPDMAs of test accuracy and clinical prediction model studies and provide recommendations for improvement. STUDY DESIGN AND SETTING: We searched PubMed (January 2018-May 2020) to identify IPDMAs of test accuracy and prediction models, then elicited whether each IPDMA assessed risk of bias of included studies and, if so, how assessments were reported and subsequently incorporated into the IPDMAs. RESULTS: Forty-nine IPDMAs were included. Nineteen of 27 (70%) test accuracy IPDMAs assessed risk of bias, compared to 5 of 22 (23%) prediction model IPDMAs. Seventeen of 19 (89%) test accuracy IPDMAs used Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2), but no tool was used consistently among prediction model IPDMAs. Of IPDMAs assessing risk of bias, 7 (37%) test accuracy IPDMAs and 1 (20%) prediction model IPDMA provided details on the information sources (e.g., the original manuscript, IPD, primary investigators) used to inform judgments, and 4 (21%) test accuracy IPDMAs and 1 (20%) prediction model IPDMA provided information or whether assessments were done before or after obtaining the IPD of the included studies or datasets. Of all included IPDMAs, only seven test accuracy IPDMAs (26%) and one prediction model IPDMA (5%) incorporated risk of bias assessments into their meta-analyses. For future IPDMA projects, we provide guidance on how to adapt tools such as Prediction model Risk Of Bias ASsessment Tool (for prediction models) and QUADAS-2 (for test accuracy) to assess risk of bias of included primary studies and their IPD. CONCLUSION: Risk of bias assessments and their reporting need to be improved in IPDMAs of test accuracy and, especially, prediction model studies. Using recommended tools, both before and after IPD are obtained, will address this.


Assuntos
Confiabilidade dos Dados , Modelos Estatísticos , Humanos , Prognóstico , Viés
16.
J Clin Epidemiol ; 165: 111199, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37898461

RESUMO

OBJECTIVE: To describe the frequency of open science practices in a contemporary sample of studies developing prognostic models using machine learning methods in the field of oncology. STUDY DESIGN AND SETTING: We conducted a systematic review, searching the MEDLINE database between December 1, 2022, and December 31, 2022, for studies developing a multivariable prognostic model using machine learning methods (as defined by the authors) in oncology. Two authors independently screened records and extracted open science practices. RESULTS: We identified 46 publications describing the development of a multivariable prognostic model. The adoption of open science principles was poor. Only one study reported availability of a study protocol, and only one study was registered. Funding statements and conflicts of interest statements were common. Thirty-five studies (76%) provided data sharing statements, with 21 (46%) indicating data were available on request to the authors and seven declaring data sharing was not applicable. Two studies (4%) shared data. Only 12 studies (26%) provided code sharing statements, including 2 (4%) that indicated the code was available on request to the authors. Only 11 studies (24%) provided sufficient information to allow their model to be used in practice. The use of reporting guidelines was rare: eight studies (18%) mentioning using a reporting guideline, with 4 (10%) using the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis Or Diagnosis statement, 1 (2%) using Minimum Information About Clinical Artificial Intelligence Modeling and Consolidated Standards Of Reporting Trials-Artificial Intelligence, 1 (2%) using Strengthening The Reporting Of Observational Studies In Epidemiology, 1 (2%) using Standards for Reporting Diagnostic Accuracy Studies, and 1 (2%) using Transparent Reporting of Evaluations with Nonrandomized Designs. CONCLUSION: The adoption of open science principles in oncology studies developing prognostic models using machine learning methods is poor. Guidance and an increased awareness of benefits and best practices of open science are needed for prediction research in oncology.


Assuntos
Inteligência Artificial , Aprendizado de Máquina , Humanos , Prognóstico
17.
Am J Epidemiol ; 193(2): 377-388, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-37823269

RESUMO

Propensity score analysis is a common approach to addressing confounding in nonrandomized studies. Its implementation, however, requires important assumptions (e.g., positivity). The disease risk score (DRS) is an alternative confounding score that can relax some of these assumptions. Like the propensity score, the DRS summarizes multiple confounders into a single score, on which conditioning by matching allows the estimation of causal effects. However, matching relies on arbitrary choices for pruning out data (e.g., matching ratio, algorithm, and caliper width) and may be computationally demanding. Alternatively, weighting methods, common in propensity score analysis, are easy to implement and may entail fewer choices, yet none have been developed for the DRS. Here we present 2 weighting approaches: One derives directly from inverse probability weighting; the other, named target distribution weighting, relates to importance sampling. We empirically show that inverse probability weighting and target distribution weighting display performance comparable to matching techniques in terms of bias but outperform them in terms of efficiency (mean squared error) and computational speed (up to >870 times faster in an illustrative study). We illustrate implementation of the methods in 2 case studies where we investigate placebo treatments for multiple sclerosis and administration of aspirin in stroke patients.


Assuntos
Acidente Vascular Cerebral , Humanos , Pontuação de Propensão , Fatores de Risco , Viés , Causalidade , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/etiologia , Simulação por Computador
19.
Rev. panam. salud pública ; 48: e13, 2024. tab, graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1536672

RESUMO

resumen está disponible en el texto completo


ABSTRACT The CONSORT 2010 statement provides minimum guidelines for reporting randomized trials. Its widespread use has been instrumental in ensuring transparency in the evaluation of new interventions. More recently, there has been a growing recognition that interventions involving artificial intelligence (AI) need to undergo rigorous, prospective evaluation to demonstrate impact on health outcomes. The CONSORT-AI (Consolidated Standards of Reporting Trials-Artificial Intelligence) extension is a new reporting guideline for clinical trials evaluating interventions with an AI component. It was developed in parallel with its companion statement for clinical trial protocols: SPIRIT-AI (Standard Protocol Items: Recommendations for Interventional Trials-Artificial Intelligence). Both guidelines were developed through a staged consensus process involving literature review and expert consultation to generate 29 candidate items, which were assessed by an international multi-stakeholder group in a two-stage Delphi survey (103 stakeholders), agreed upon in a two-day consensus meeting (31 stakeholders) and refined through a checklist pilot (34 participants). The CONSORT-AI extension includes 14 new items that were considered sufficiently important for AI interventions that they should be routinely reported in addition to the core CONSORT 2010 items. CONSORT-AI recommends that investigators provide clear descriptions of the AI intervention, including instructions and skills required for use, the setting in which the AI intervention is integrated, the handling of inputs and outputs of the AI intervention, the human-AI interaction and provision of an analysis of error cases. CONSORT-AI will help promote transparency and completeness in reporting clinical trials for AI interventions. It will assist editors and peer reviewers, as well as the general readership, to understand, interpret and critically appraise the quality of clinical trial design and risk of bias in the reported outcomes.


RESUMO A declaração CONSORT 2010 apresenta diretrizes mínimas para relatórios de ensaios clínicos randomizados. Seu uso generalizado tem sido fundamental para garantir a transparência na avaliação de novas intervenções. Recentemente, tem-se reconhecido cada vez mais que intervenções que incluem inteligência artificial (IA) precisam ser submetidas a uma avaliação rigorosa e prospectiva para demonstrar seus impactos sobre os resultados de saúde. A extensão CONSORT-AI (Consolidated Standards of Reporting Trials - Artificial Intelligence) é uma nova diretriz para relatórios de ensaios clínicos que avaliam intervenções com um componente de IA. Ela foi desenvolvida em paralelo à sua declaração complementar para protocolos de ensaios clínicos, a SPIRIT-AI (Standard Protocol Items: Recommendations for Interventional Trials - Artificial Intelligence). Ambas as diretrizes foram desenvolvidas por meio de um processo de consenso em etapas que incluiu revisão da literatura e consultas a especialistas para gerar 29 itens candidatos. Foram feitas consultas sobre esses itens a um grupo internacional composto por 103 interessados diretos, que participaram de uma pesquisa Delphi em duas etapas. Chegou-se a um acordo sobre os itens em uma reunião de consenso que incluiu 31 interessados diretos, e os itens foram refinados por meio de uma lista de verificação piloto que envolveu 34 participantes. A extensão CONSORT-AI inclui 14 itens novos que, devido à sua importância para as intervenções de IA, devem ser informados rotineiramente juntamente com os itens básicos da CONSORT 2010. A CONSORT-AI preconiza que os pesquisadores descrevam claramente a intervenção de IA, incluindo instruções e as habilidades necessárias para seu uso, o contexto no qual a intervenção de IA está inserida, considerações sobre o manuseio dos dados de entrada e saída da intervenção de IA, a interação humano-IA e uma análise dos casos de erro. A CONSORT-AI ajudará a promover a transparência e a integralidade nos relatórios de ensaios clínicos com intervenções que utilizam IA. Seu uso ajudará editores e revisores, bem como leitores em geral, a entender, interpretar e avaliar criticamente a qualidade do desenho do ensaio clínico e o risco de viés nos resultados relatados.

20.
Rev. panam. salud pública ; 48: e12, 2024. tab, graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1536674

RESUMO

resumen está disponible en el texto completo


ABSTRACT The SPIRIT 2013 statement aims to improve the completeness of clinical trial protocol reporting by providing evidence-based recommendations for the minimum set of items to be addressed. This guidance has been instrumental in promoting transparent evaluation of new interventions. More recently, there has been a growing recognition that interventions involving artificial intelligence (AI) need to undergo rigorous, prospective evaluation to demonstrate their impact on health outcomes. The SPIRIT-AI (Standard Protocol Items: Recommendations for Interventional Trials-Artificial Intelligence) extension is a new reporting guideline for clinical trial protocols evaluating interventions with an AI component. It was developed in parallel with its companion statement for trial reports: CONSORT-AI (Consolidated Standards of Reporting Trials-Artificial Intelligence). Both guidelines were developed through a staged consensus process involving literature review and expert consultation to generate 26 candidate items, which were consulted upon by an international multi-stakeholder group in a two-stage Delphi survey (103 stakeholders), agreed upon in a consensus meeting (31 stakeholders) and refined through a checklist pilot (34 participants). The SPIRIT-AI extension includes 15 new items that were considered sufficiently important for clinical trial protocols of AI interventions. These new items should be routinely reported in addition to the core SPIRIT 2013 items. SPIRIT-AI recommends that investigators provide clear descriptions of the AI intervention, including instructions and skills required for use, the setting in which the AI intervention will be integrated, considerations for the handling of input and output data, the human-AI interaction and analysis of error cases. SPIRIT-AI will help promote transparency and completeness for clinical trial protocols for AI interventions. Its use will assist editors and peer reviewers, as well as the general readership, to understand, interpret and critically appraise the design and risk of bias for a planned clinical trial.


RESUMO A declaração SPIRIT 2013 tem como objetivo melhorar a integralidade dos relatórios dos protocolos de ensaios clínicos, fornecendo recomendações baseadas em evidências para o conjunto mínimo de itens que devem ser abordados. Essas orientações têm sido fundamentais para promover uma avaliação transparente de novas intervenções. Recentemente, tem-se reconhecido cada vez mais que intervenções que incluem inteligência artificial (IA) precisam ser submetidas a uma avaliação rigorosa e prospectiva para demonstrar seus impactos sobre os resultados de saúde. A extensão SPIRIT-AI (Standard Protocol Items: Recommendations for Interventional Trials - Artificial Intelligence) é uma nova diretriz de relatório para protocolos de ensaios clínicos que avaliam intervenções com um componente de IA. Essa diretriz foi desenvolvida em paralelo à sua declaração complementar para relatórios de ensaios clínicos, CONSORT-AI (Consolidated Standards of Reporting Trials - Artificial Intelligence). Ambas as diretrizes foram desenvolvidas por meio de um processo de consenso em etapas que incluiu revisão da literatura e consultas a especialistas para gerar 26 itens candidatos. Foram feitas consultas sobre esses itens a um grupo internacional composto por 103 interessados diretos, que participaram de uma pesquisa Delphi em duas etapas. Chegou-se a um acordo sobre os itens em uma reunião de consenso que incluiu 31 interessados diretos, e os itens foram refinados por meio de uma lista de verificação piloto que envolveu 34 participantes. A extensão SPIRIT-AI inclui 15 itens novos que foram considerados suficientemente importantes para os protocolos de ensaios clínicos com intervenções que utilizam IA. Esses itens novos devem constar dos relatórios de rotina, juntamente com os itens básicos da SPIRIT 2013. A SPIRIT-AI preconiza que os pesquisadores descrevam claramente a intervenção de IA, incluindo instruções e as habilidades necessárias para seu uso, o contexto no qual a intervenção de IA será integrada, considerações sobre o manuseio dos dados de entrada e saída, a interação humano-IA e a análise de casos de erro. A SPIRIT-AI ajudará a promover a transparência e a integralidade nos protocolos de ensaios clínicos com intervenções que utilizam IA. Seu uso ajudará editores e revisores, bem como leitores em geral, a entender, interpretar e avaliar criticamente o delineamento e o risco de viés de um futuro estudo clínico.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...